Articles
Vol. 9 (2022): Revista de Estudos Empíricos em Direito
TEXT SUMMARIZATION AS AN EMPIRICAL LEGAL RESEARCH TOOL
Abstract
This paper use text summarization techniques as a tool for empirical legal research, creating a summary of the decisions given the phrases predictive power with regards to the decision outcome. A dataset of habeas corpus decisions from various courts in Brazil is used that explicitly cite the COVID pandemic as a reason for requesting the release of the patients. A predictive model is created and through this analysis we propose to find the arguments most correlated with the outcome.
References
Alguliyev, R., Aliguliyev, R. (2009). Evolutionary Algorithm for Extractive Text Summarization. Intelligent Information Management. 1. 128-138. doi: 10.4236/iim.2009.12019.
Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W. (2002). SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. (JAIR). 16. 321-357. doi: 10.1613/jair.953.
Hachey, Ben & Grover, Claire. (2006). Extractive summarisation of legal texts. Artificial Intelligence and Law. 14. 305-345. doi: 10.1007/s10506-007-9039-z.
Kanapala, A., Pal, S., Pamula, R. (2019). Text summarization from legal documents: a survey. Artificial Intelligence Review. 51. doi: 10.1007/s10462-017-9566-2.
Group, Lazuage & Moens, Marc. (2002). Sentence Extraction as a Classification Task.
Jadhav, Aishwarya & Rajan, Vaibhav. (2018). Extractive Summarization with SWAP-NET: Sentences and Words from Alternating Pointer Networks. 142-151. doi: 10.18653/v1/P18-1014.
Lippi, Marco & Torroni, Paolo. (2015). Argument Mining: A Machine Learning Perspective. 9524. 163-176. doi: 10.1007/978-3-319-28460-6_10.
Lloret, E., Palomar, M. (2012) Text summarisation in progress: a literature review. Artif Intell Rev 37, 1–41. doi: 10.1007/s10462-011-9216-z
Nenkova, A., Kathleen, M. (2012) A survey of text summarization techniques, Mining text data, Springer-Verlag New York, doi: 10.1007/978-1-4614-3223-4
Templeton, A., Kalita, J. (2018) "Exploring Sentence Vector Spaces through Automatic Summarization," 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 2018, pp. 55-60, doi: 10.1109/ICMLA.2018.00016.
Teufel, S., Uk, S., Moens, M. (2001). Sentence Extraction as a Classification Task.
Yogan, J.K., Goh, O.S., Halizah, B., Ngo, H.C., Puspalata, C.S. (2016) A Review On Automatic Text Summarization Approaches. Journal Of Computer Science, 12 (4). pp. 178-190. ISSN 1549-3636
Yousfi-Monod, Mehdi & Farzindar, Atefeh & Lapalme, Guy. (2010). Supervised Machine Learning for Summarizing Legal Documents. 51-62. 10.1007/978-3-642-13059-5_8.
Downloads
Download data is not yet available.